If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2j^2+4j-5=0
a = 2; b = 4; c = -5;
Δ = b2-4ac
Δ = 42-4·2·(-5)
Δ = 56
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{56}=\sqrt{4*14}=\sqrt{4}*\sqrt{14}=2\sqrt{14}$$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{14}}{2*2}=\frac{-4-2\sqrt{14}}{4} $$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{14}}{2*2}=\frac{-4+2\sqrt{14}}{4} $
| 140=4f-148 | | 120=4f-148 | | 3(�+1)+4�+3=3(x+1)+4x+3= 3434 | | y=5(2)+100 | | 9+6q=7q | | 31=21n | | (2x*3)-4=20 | | 2x²-4x-780=0 | | f(-2)=9(2) | | 2x-11=10x+53 | | x=(3x-7)+(x-5) | | 7x2+84x+224=0 | | 21=d^2 | | 8x2-72x-80=0 | | 5.1x=45.9 | | 3x⁴-30x²+27=0 | | 11=5.7(7t-1) | | 3x5=Nx50 | | -3x+3(4x-1)=-3 | | -5(6x+5)=-85 | | -0.8x+4,1=6,2 | | 6=y(8-2y) | | 3x+2(-5x+21)=21 | | 8-5(2x-3)=4-(x+3) | | 100n=25 | | -8w+5(w-3)=-3w-15 | | -6x-3(-7x+23)=-9 | | -6x+4-6x=-140 | | (X-2)=-2(x+1) | | 4(x-5)=38 | | x-11=5x-120 | | 7=0.25d² |